电工基础知识_电工技术-电工最常见电路

当前位置: 电工基础主页 > 电工基础 >

电容性负载稳定性问题的探究和解决方案

时间:2023-02-12 16:51来源:未知 作者:admin 点击:
鉴于反馈通路中相移(或者称作延迟)引起的诸多问题,我们一直在追求 运算放大器 的稳定性。通过上周的讨论我们知道, 电容 性负载稳定性是一个棘手的问题。 “麻烦制造者”运

鉴于反馈通路中相移(或者称作延迟)引起的诸多问题,我们一直在追求运算放大器的稳定性。通过上周的讨论我们知道,电容性负载稳定性是一个棘手的问题。

“麻烦制造者”运算放大器开环输出电阻 (Ro),实际并非运算放大器内部的一个电阻器。它是一个依赖于运算放大器内部电路的等效电阻。如果不改变运算放大器,也就不可能改变这种电阻。CL为负载电容。如果您想驱动某个 CL,您就会受困于 Ro 和 CL形成的极点频率。G=1 时 20MHz 运算放大器的反馈环路内部 1.8MHz 极点频率便会带来问题。请查看图 1。

电容性负载稳定性问题的探究和解决方案

对于这个问题,有一种常见解决方案—调慢放大器响应速度。想想看,环路具有固定的延迟,其来自 Ro 和 CL。为了适应这种延迟,放大器必须更慢地响应,这样它才不至于超过去,错过希望获得的终值。

减速的一种好办法是,将运算放大器放置在更高的增益中。高增益降低了闭环放大器的带宽。图 2 显示了驱动相同 1nF 负载但增益为 10 的OPA320,其小步进值的响应性能得到极大提高,但仍然很小。将增益增加到 25 甚至更大,似乎相当好。

电容性负载稳定性问题的探究和解决方案

但是另一个问题出现了。图 3 增益仍为 10,但增加了 Cc,其将速度又降低了 1 位。Cc 过小时,响应看起来更像图 2。Cc 过大时,可能出现问题,其看起来更像图 1。

电容性负载稳定性问题的探究和解决方案

恰到好处地补偿,可解决“靠近速率”问题——波特图分析。

责任编辑:gt

(责任编辑:admin)
相关文章
------分隔线----------------------------
栏目列表
推荐内容