GaN 异质衬底外延生长方法 由于GaN在高温生长时N的离解压很高,很难得到大尺寸的GaN单晶材料,因此,为了实现低成本、高效、高功率的GaN HEMTs器件,研究人员经过几十年的不断研究,并不断尝试利用不同的外延生长方法在Si衬底上实现高质量的外延生长GaN基材料。GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,生长GaN需要一定的生长温度,且需要一定的NH3分压。 当前GaN的外延生长方法有:氢化物外延生长法(HVPE)]、分子束外延(MBE)和金属有机化学气相沉积法(MOCVD),其特点如下表2-1所示。 1.1 金属有机物气相沉积法(MOCVD) MOCVD(金属有机物气相沉积法)是在气相外延生长的基础上发展起来的一种新型气相外延生长技术。在采用MOCVD法制备GaN单晶的传统工艺中,通常以三甲基镓作为镓源,氨气作为氮源,以Si作为衬底,并用氢气和氮气的混合气体作为载气,将反应物载入反应腔内,加热到一定温度下使其发生反应,能够在衬底上生成GaN的分子团,在衬底表面上吸附、成核、生长,最终形成一层GaN单晶薄膜。采用MOCVD法制备的产量大,生长周期短,适合用于大批量生产,但生长完毕后需要进行退火处理,最后得到的薄膜可能会存在裂纹,会影响产品的质量。 1.2 分子束外延法(MBE) 用MBE法(分子束外延法)制备GaN与MOCVD法类似,主要的区别在于镓源的不同。MBE法的镓源通常采用Ga的分子束,NH3作为氮源,制备方法与MOCVD法相似,也是在衬底表面反应生成GaN。用该方法可以在较低的温度下实现GaN的生长,一般为700 ℃左右。较低的温度可以有效减少反应设备中NH3的挥发程度,但低温使得分子束与NH3的反应速率减小。较小的反应速率可以在制备过程中对生成GaN 膜的厚度进行精确控制,有利于对该工艺中的生长机理进行深入研究,但对于外延层较厚的膜来说反应时间会比较长,在生产中发挥的效率欠佳,因此该方法只能用于一次制备少量的GaN薄膜,尚不能用于大规模生产。 1.3 氢化物气相外延法(HVPE) HVPE(氢化物气相外延法)与上述两种方法的区别还是在于镓源,此方法通常以镓的氯化物GaCl3为镓源,NH3为氮源,在衬底上以1000 ℃左右的温度生长出GaN晶体。用此方法生成的GaN晶体质量比较好,且在较高的温度下生长速度快,但高温反应对生产设备,生产成本和技术要求都比较高。 采用以上传统方法制备GaN薄膜,对其质量好坏的主要影响因素是Si与薄膜晶格的相配程度。欲制备无缺陷的薄膜,首先要满足两者之间尽量小的晶格失配度;其次,两者的线膨胀系数也要相近。 表1-1 GaN外延生长方法的优缺点 制备方法外延生长过程优点缺点氢化物气相外延法在金属镓上流过HCl,形成GaCl蒸汽,当他流到衬底上,与氨气反应,沉积形成GaN。①生长速度快 ②可以比较精确地控制膜厚①高温反应对生产设备、生产成本和技术要求都比较高。金属有机物气相沉积法气体或者固体分子在高温下热裂解生成团簇,通过载气扩散到基片上,在催化剂的作用下排列、反应、生长、沉积。①适合于工业化生产 ②GaN晶体质量好①过程比较复杂 ②反应速率影响因素多 ③温度高,原材料消耗大分子束外延法在真空中亿原子束或分子束溅落到衬底上,并在衬底上按一定的结构有序排列,形成晶体薄膜。①生长温度低 ②生长反应过程简单 ③实时监控生长表面的结构、成分和膜厚,均匀性较好①生长速率慢 ②不能满足大规模商业化生产的要求 ③采用等离子体辅助方式时,容易造成高能离子对于薄膜的损伤经过分析了不同的GaN外延生长方法,虽然分子束外延技术可以在较低的温度下实现GaN的生长,其生长反应过程简单,可以实时监控生长表面的结构、成分和膜厚,生长温度低,均匀性较好,但是由于这种方法的生长速率较慢,可以精确地控制膜厚,不能满足大规模商业化生产的要求,而且当采用等离子体辅助方式时,容易造成高能离子对于薄膜的损伤。而金属有机化学气相沉积法的生长速率适中,可以比较精确地控制膜厚,特别适合于工业化生产GaN基外延材料,这种方法目前已经成为使用最多、外延生长材料和器件质量最高的方法。 02 异质外延生长的基本模式 一般来讲,异质外延有三种生长模式:Frank-van der Merwe 生长模式(层状生长模式)、Volmer-Weber生长模式(岛状生长模式)和Stranski-Krastanow生长模式(先层状生长再岛状生长)[30-32],这三种生长模式如图4-1所示。 2.1 Frank-van der Merwe 生长模式 层-层生长模式一般发生于晶格常数比较匹配,晶格失配较小,衬底与外延层之间的键能较高的两种异质材料之间。当外延层材料的的表面自由能σf与界面能σi之和远小于衬底材料的表面自由能σs时,衬底材料将非常强烈地趋于完全覆盖衬底表面(即层-层生长模式),也就是外延层与衬底浸润,因为此生长模式会使整个体系的总表面自由能降低。于是沉积物质会先在衬底表面二维成核再扩展成层,然后在一层生长结束后再进行下一层的生长,如此按逐层生长的模式进行。 2.2 Volmer-Weber 生长模式 当σs<σf+σi时,外延层与衬底表面不能形成浸润层,为了使表面能降低以使外延层材料的表面面积最小化,外延层材料会在衬底表面形成许多三维小岛。随着外延层材料沉积的继续进行,这些众多的小岛逐渐长大形成柱状岛,并彼此汇聚,最终形成表面粗糙的薄膜。在岛状结构中会有释放应变产生的失配位错,岛与岛之间存在着小角度的取向差别,在彼此汇聚时会产生位错密度很高的边界层。 2.3 Stranski-Krastanow生长模式 当外延层材料的表面自由能σf与界面能σi之和略大于或者略小于衬底材料表面自由能σS时,外延生长会大大依赖于衬底与外延层之间的晶格匹配情况。GaN在蓝宝石衬底上的异质外延生长就属于此种情况。一开始生长时外延层材料与衬底浸润,先形成几个原子层厚度的浸润层。随着沉积的进行,应变逐渐积累,最后会通过形成三维岛的形式来释放应力。由于应变能不是通过形成位错来释放的,所以小岛中不含有位错。 编辑:黄飞 (责任编辑:admin) |