电工基础

电工基础知识_电工技术-电工最常见电路

利用PCB布局技术实现音频放大器的RF噪声抑制(2)

时间:2024-03-26 14:57来源:[db:来源] 作者:admin 点击:
滤波器 。请参考图1A中电容模型(C1)的阻抗特性。 图1A. 非理想电容模型 图1B. 非理想电容模型,阻抗特性 如果C1为理想电容,则阻抗特性会随着频率的提
滤波器。请参考图1A中电容模型(C1)的阻抗特性。

  图1A. 非理想电容模型

  图1A. 非理想电容模型

  图1B. 非理想电容模型,阻抗特性

  图1B. 非理想电容模型,阻抗特性

  如果C1为理想电容,则阻抗特性会随着频率的提升而下降(XC = 1/[2π x f x C])。但是,实际应用中并不存在理想电容。非理想电容模型(图1B)的阻抗在自谐振频率*下陷,然后随着频率开始上升。当频率大于fo时,则电感分量开始增加(XL = 2π x f x L)。如果将电容作为滤波器使用,当接近或高于其自谐振频率时,则此种特性将会令滤波效果变差。但是,如果选择电容将特定的高频分量旁路接地,则此时电容的自谐振特性就可以派上用场了。

  MAX9750实例分析:33pF电容加在BIAS针脚上,改善了RF抑制能力(平均3.6dB)。

  控制输入引脚的噪声

  通常,音频放大器的输入引脚总是RF耦合噪声的源头,所以要确保输入引线的长度小于系统的RF信号波长的1/4。安静的地层同时也会减少耦合到输入引脚的RF噪声。应在IC的各个输入引线周围布满安静的地层。此接地层有助于所选音频放大器的输入引脚与任意高频RF信号的隔离。

  MAX9750实例分析:将输入引线长度缩短三倍,并在左声道、右声道和PC-beep引脚上铺上地层,将进一步改善了MAX9750 IC的RF抑制能力(图2)。

  图2. MAX9750C扬声器放大器的RF抑制能力测试结果:噪声基底 = -94.4dBV。

  图2. MAX9750C扬声器放大器的RF抑制能力测试结果:噪声基底 = -94.4dBV。

  注:图2给出了MAX9750 IC的典型RF抑制能力。天线信号强度、电缆长度及扬声器类型等一些外部因素也会影响RF抑制性能。

  我们也可以采用一些高成本的方法,比如在RF敏感度较高的放大器针脚上增加LC滤波器或在电路板中增加低ESR电容。这些方法效果显著,但成本较高。如果可以确定RF噪声的来源,则无需使用高成本解决方案。

  总结

  RF抑制能力较差的音频放大器会影响整个系统设计的完整性。如果能够找到问题的根源所在,则可以采取适当的措施以避免音频RF解调。通常情况下,输入端、输出端、偏置端和电源端的引线应小于系统RF信号波长的1/4。如果需要提高RF抑制能力,可以采用一个小电容将IC引脚直接接地(即使该引脚上已连接了大电容),并在易受影响的放大器引脚附近铺上地层。最后,使大功率RF系统模块远离易受影响的音频放大器引脚。在采取这些措施之后,将消除“讨厌”的音频解调“嗡嗡”声。 (责任编辑:admin)

织梦二维码生成器
------分隔线----------------------------